Cost-Sensitive Feature Reduction Applied to a Hybrid Genetic Algorithm
نویسندگان
چکیده
This study is concerned with whether it is possible to detect what information contained in the training data and background knowledge is relevant for solving the learning problem, and whether irrelevant information can be eliminated in preprocessing before starting the learning process. A case study of data preprocessing for a hybrid genetic algorithm shows that the elimination of irrelevant features can substantially improve the e ciency of learning. In addition, cost-sensitive feature elimination can be e ective for reducing costs of induced hypotheses.
منابع مشابه
Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملCost - sensitive feature reduction applied to
This study is concerned with whether it is possible to detect what information contained in the training data and background knowledge is relevant for solving the learning problem, and whether irrelevant information can be eliminated in preprocessing before starting the learning process. A case study of data preprocessing for a hybrid genetic algorithm shows that the elimination of irrelevant f...
متن کاملApplying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کاملپیش بینی قیمت سهام با استفاده از شبکه عصبی فازی مبتنی برالگوریتم ژنتیک و مقایسه با شبکه عصبی فازی
In capital markets, stock price forecasting is affected by variety of factors such as political and economic condition and behavior of investors. Determining all effective factors and level of their effectiveness on stock market is very challenging even with technical and knowledge-based analysis by experts. Hence, investors have encountered challenge, doubt and fault in order to invest with mi...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کامل